Exam for BIO105

Room: CE3
Duration : 08:15 to 11 :15
Instructions :
1. 3 A4 sheets of paper (6 pages) with supporting material are allowed.
2. Electronic calculators are not allowed.
4. In all answers, provide <i>detailed</i> calculations and explanations. No point will be given for right answers with no justification or with incorrect justification. It is allowed to submit additional sheets of paper with calculations or explanations when the space is not sufficient on the exam sheets.
5. Write your full first name and last name on the cover sheet.
First name :
Last name :
6. Put your initials on the other sheets, including any additional sheet.
Total number of points : 50 points
Grade = (your points / 10) + 1

Genetic code

	Т		С		Α		G			
	TTT	nho	TCT		TAT	tur	TGT	CVC	Т	
۱.	TTC	phe	TCC	cor	TAC	tyr	TGC	cys	С	
T	TTA	lou	TCA	ser	TAA	cton	TGA	stop	Α	
	TTG	leu	TCG		TAG	stop	TGG	try	G	
	CTT		CCT		CAT	his	CGT		Т	
С	CTC	leu	CCC	nro	CAC	1115	CGC	ara	U	
١	CTA	ieu	CCA	pro	CAA	aln	CGA	arg	A	
	CTG		CCG		CAG	gln	CGG		G	
	ATT	دا:	ACT		AAT	acn	AGT	cor	Т	
_	ATC	ile	ACC	+hr	AAC	asp	AGC	ser	U	
Α	ATA	ile	ACA	thr	AAA	lvc	AGA	ara	Α	
	ATG	met	ACG		AAG	lys	AGG	arg	G	
	GTT		GCT		GAT	acn	GGT		Т	
G	GTC	val	GCC	ala	GAC	asp	GGC	ماير ا	C	
٦	GTA	val	GCA	ala	ala	GAA	alu	GGA	gly	Α
	GTG		GCG		GAG	glu	GGG		G	

BIO-105 01.29.2022

Question 1			2 pt
In the field of gene expre	ession define what is a pro	omoter.	
Question 2			3 pt
	NApolymerases able to tr	anscribe genes.	·
2414111		C :	
2.1 Which one of the 3 R	NApolymerases has a lon	g C-terminal domain (CTD)?	
a. RNApol I	b. RNApol II	c. RNApol III	
·	•	•	
	\		
2.2 Explain the function(s) of the long CTD during	gene transcription.	

Question 3 10 pt

Problem 3.1 Translation

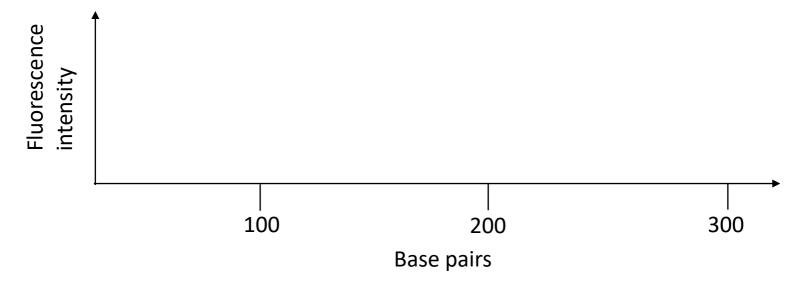
The 200-base-pairs sequence given below is the coding strand immediately downstream for a promoter. The sequence of the coding DNA strand is identical to the sequence of the mRNA except for T replaced by U in RNA.

5'tgagatttaa ttgactgaat <u>ag</u>tgcgaagc tca<u>ag</u>cccat gttacacagg <u>cgatattatt</u> gctcaggatc tgagctg<u>ttt tg</u>cgttcca attgatcagt tgtgtgaaaa ataagatctg agtactctct ctctcta agtttataga acca**ccgg**ca atggctgttg gacccactct gcaaggatgt ctcatgtgtc 3'

Give in amino acids the length of the protein encoded by the sequence above

1.1 as shown		
	amino acids	
In the following questions (1.2 to 1	6) consider only	one change at the time
1.2 when at position 51, C is chang	-	ggcga -> ggaga
1.3 when at position 83, G is chang	ged into A amino acids	ttttggcg -> tttgacg
1.4 when at position 21, A is delet	ed amino acids	aat agt → aat gt
1.5 when at position 34, A is delet	ed amino acids	tcaagc → tcagc
1.6 when a stuttering adds one T a	round position 8	0 g <u>tttt</u> g -> gtttt <mark>t</mark> g
	_ amino acids	

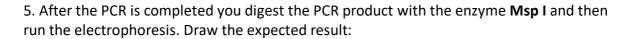
1.7 During which phase of the cell cycle does stuttering occur?

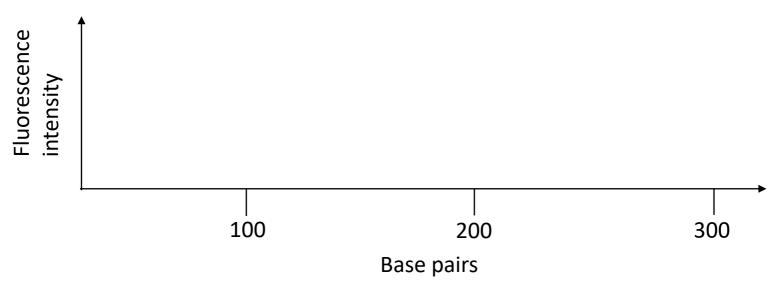

Problem 3.2 PCR

To amplify the given sequence by PCR you order 15-nucleotide long primers. Indicate the sequence of the primers you order.

- 1. 5' _______3
- 2. 5'

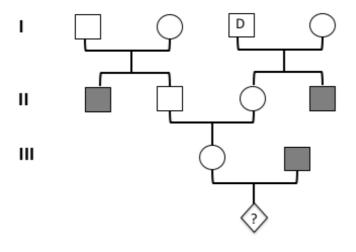
The 2 primers you have ordered are fluorescent primers. After the PCR is completed, you analyze de PCR product by electrophoresis in a capillary tube.


3. Draw the expected result:



In your lab both restriction enzymes Hpa II and Msp I are available. Both enzymes recognize the sequence 5'CCGG3'. Hpa II is methylation sensitive, Msp I is methylation insensitive. Note the 5'CCGG3' is present in the given sequence (positions 155 to 158)

4. After the PCR is completed you digest the PCR product with the enzyme **Hpa II** and then run the electrophoresis. Draw the expected result:



Problem 3.3 Methylation

In cells, sometime DNA is methylated. Consider that the given sequence is a from a mammalian organism.

3.1 How many bases can potentially be methylated in the given sequence?
5.1 Flow many bases can potentially be methylated in the given sequence:
base(s)
3.2 Describe an experimental procedure allowing you to find out whether in vivo the given sequence is methylated or not. Describe all the steps of the procedure and the expected results allowing you to conclude about methylation.

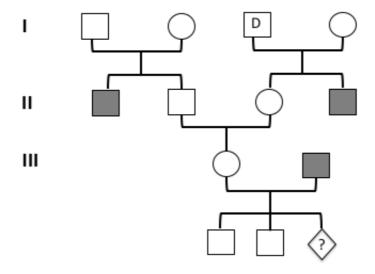
Problem 4.1

D = red / green color blindness

Filled symbols: red hair

The	pregnant	woman	in	generation	Ш	has
	P0			00		

- a red hair paternal uncle
- a red/green colorblind maternal grandfather
- a red hair maternal uncle
- 1. For this woman what is her probability to be
- carrier for red hair
- carrier for color blindness


She is married to a man with red hair; he is not red/green color blind.

2. For the first child to be born what is the probability to present with

	for a boy :	for a girl :
dark hair & normal color vision		
dark hair & red/green color blindness		
red hair & normal color vision		
red hair & red/green color blindness		

Problem 4.2

10 years later, the same couple has now 2 boys and is expecting a third child.

Knowing that the 2 boys have dark hair and can distinguish red from green,

calculate the probability for the third child to present with red hair.
 (we consider only the hair color in this problem, we ignore color blindness)

♦ calculate the probability for the third child to present with color blindness (we consider only color blindness in this problem, we ignore hair color)

- for a girl :
- for a boy :

Question 5

In a plant species one observes 2 phenotypes:

- flowers color
- seeds surface

One crosses a plant with purple flowers and smooth seed with a plant having white flowers and wrinkled seed:

flowers: purple white

Χ

seeds: smooth wrinkled

From this cross the F1 shows: 100 % pink flowers and 100 % smooth seeds

Problem 5.1 (2 parts)

You know that

the flower color locus is located on chromosome 2

the seed surface locus is located on chromosome 4

Indicate the phenotypes and their expected relative frequencies in the F2 obtained by

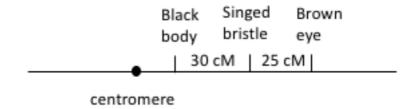
5.1.a F1 x (white / wrinkled) 5.1.b F1 x F1

Problem 5.2 (only 1 part)

One starts with the same parental cross as for the previous problem. Consider now that both locus are located on the same chromosome (chromosome 2), 8 cM (centimorgan) apart.

Indicate the phenotypes and their expected relative frequencies in the F2 obtained from the cross

F1 X (white / wrinkled)


Problem 5.3

In Drosophila, a genetic map indicates that 3 locus are located on the same chromosome:

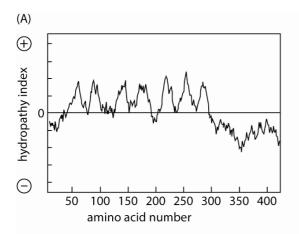
Black body is located 10 cM from the centromere (wild-type: gray body)

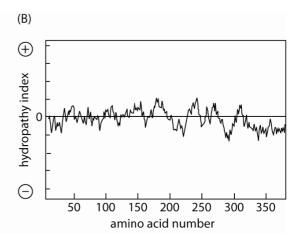
Singed bristle is located 40 cM from the centromere (wild-type: straight bristle)

Brown eye is located 65 cM from the centromere (wild-type : red eye)

One does the following cross

Female	Male
gray body	black body
Х	
red eyes	brown eyes


The F1 shows 100% gray body and 100% red eye. A F2 is generated by crossing some F1 females with a male presenting a black body and brown eyes.


Indicate the phenotypes and their expected relative frequencies in the F2.

Question 6

Examine the two hydropathy plots in Figure A & B.

The Kyte Doolittle scale has been used: positive values indicate hydrophobicity.

5 pt

6.1 Which protein is most likely a transmembrane protein?

6.2 Which of the protein is most likely located in the cytosol?

Α

6.3 For the transmembrane protein, what is the probable number of transmembrane domains?

Justify your answer:

6.4 To generate an hydropathy plot one has to define a "window size". Which window size is best to identify transmembrane domains? Explain why.

Window size : ______
Justification :

._____

A person with a male appearance has a karyotype **47, XYY** in all the blood cells that have been analyzed. The chromosomal abnormality is probably due to a nondisjunction.

1. in which parent did the nondisjunction occur?

a. mother

b. father

2. during which stage of the meiosis did the nondisjunction occur?

a. meiosis I

b. meiosis II

3. If cheeks cells are sampled by rubbing a swab in the oral cavity and a sex chromatin test is performed on the cheeks cell, how many Bar bodies do you expect to see?

a. 0

b. 1

c. 2

d. 3

4. If the karyotyping test had revealed that 64% of the cells have a 46, XY karyotype and 34% have a 47, XYY karyotype, which term used to describe such a condition?

5. Explain how the condition described in the question 4 can occur.

(Blank page you may use as needed)